On the origin and propagation of Denmark Strait Overflow Water Anomalies in the Irminger Basin

Kerstin Jochumsen¹, Detlef Quadfasel¹, Manuela Köllner¹,², Stephen Dye³,⁴, Bert Rudels⁵ and Heðinn Valdimarsson⁶

¹ University of Hamburg, ZMAW, Germany
² now at GEOMAR, Kiel, Germany
³ CEFAS, Lowestoft, UK
⁴ University of East Anglia, Norwich, UK
⁵ FMI, Helsinki, Finland
⁶ Marine Research Institute, Reykjavik, Iceland
Motivation

Which water masses are responsible for the variability observed in the near-bottom Deep Western Boundary Current?

East Greenland Shelf Water contributes to overflow south of Denmark Strait?
Observations

Temperature

Salinity

Cross-section velocity

Summer 2012, cruise P437-1
Observations

Denmark Strait sill (DS sill) – DSOW entrainment region (ER) – DSOW at Angmagssalik (Angmag)
Observations

Denmark Strait sill (DS sill) – DSOW entrainment region (ER) – DSOW at Angmagssalik (Angmag)
Temperature time series (daily)

2010-2011 example

DS sill

ER

Angmag

r<0.25

low correlation in the daily data

single eddies do not survive the descend of the plume
Pot. temperature fluctuations are similar within the mooring arrays.

DS sill
- Mean: $-0.08^\circ C \pm 0.13^\circ C$
- Correlation: $r=0.8$

ER
- Mean: $1.10^\circ C \pm 0.21^\circ C$
- Correlation: $r>0.9$

Angmag
- Mean: $1.45^\circ C \pm 0.16^\circ C$
- Correlation: $r>0.7$
Salinity fluctuations are small at DS sill and increase downstream.

DS sill
mean: 34.898 ± 0.003
r = 0.6

ER
mean: 34.897 ± 0.008
r > 0.8

Angmag
mean: 34.895 ± 0.009
r > 0.9

Salinity time series (lp filtered)

Mean salinity values and correlation coefficients for different locations are shown, indicating the salinity changes over time.
Velocity fluctuations are dependent on the plume position.

DS sill

- r < 0.4

Angmag

- r = -0.3
Signal propagation

pot. temperature

DS sill

- $r=0.8$, 2d lag

ER

- $r=0.8$
- 11d lag

Angmag

- $r=0.8$
- 15d lag

Pot. temperature signals are advected (mean speed: approx. 45 cm/s)
Pot. temperature signals are advected (mean speed: approx. 45 cm/s), salinity signals are strongly modified by entrainment

salinity

DS sill

not significant

ER

n.s.

r = 0.9

11 d lag

Angmag

Signal propagation
Mixing of Water Masses
Mixing of Water Masses

Other possibilities:
- ISOW or NEADW (more saline than DSOW)
- LSW (not found near DSOW)
- LDW (not found near DSOW)

Here, we use a very simple approach!
About 75% of the water at Angmagssalik is of northern origin!

Good agreement with other studies (e.g. Falina et al, 2012; Koszalka et al., 2013).

Overflow volume transport is about doubled from DS sill to Angmagssalik due to entrainment (Dickson et al., 2008):

→ About 2.5 Sv from Spill Jet needed!
Conclusions

- good correlation of temperature time series
 → temp. signals are advected from the sill
- low/no significant correlation in salinity and velocity
 → entrainment processes strongly modify salinity

- East Greenland current water is needed to obtain low salinities
- entrainment is dominant between DS sill and DS 5-7
 EGC spill jet plays a minor role for DSOW south of 64°N
 intermittent spill events likely combine to long term effects
- downstream DSOW properties do not necessarily reflect Nordic
 Seas conditions (especially in salinity), mixing ratio is a major
 contributor to salinity variance
Conclusions

Will Arctic temperature/salinity variability be seen in downstream DSOW measurements?

Only if the signals are very pronounced.

Which water masses are responsible for the variability observed in the Deep Western Boundary Current?

The original deep overflow crossing the GSR, but also the Atlantic Water in the Irminger Sea, as well as the EGC spill jet waters.

Open questions

Where exactly does the spilling take place (~2.5 Sv)?
Kangerdlugssuaq Trough?

Open questions

Where exactly does the spilling take place? Kangerdlugssuaq Trough?

Plans

Cruise POS486 in summer 2015
New phase of BMBF project RACE
The research leading to these results has received funding from the European Union 7th Framework Programme (FP7 2007-2013), under grant agreement n.308299
NACLIM www.naclim.eu

This work was supported by the Co-Operative Project “RACE - Regional Atlantic Circulation and Global Change” funded by the German Federal Ministry for Education and Research (BMBF), 03f0651a.
RACE race.zmaw.de